- 23. Farnsworth, C. L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRE Nature 376, 524-527 (1995).
- 24. Brambilla, R. et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 390, 281-286 (1997)
- 25. Dusenbery, D. B., Sheridan, R. E. & Russell, R. L. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics 80, 297-309 (1975).
- 26. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742 (1991)
- 27. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970 (1991).
- 28. Nonet, M. L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061-8073 (1997).
- 29. Yung, Y. et al. Detection of ERK activation by a novel monoclonal antibody. FEBS Lett. 408, 292-296 (1997).

Acknowledgements

We thank D. Garbers for the gcy-10::GFP reporter plasmid; M. Han for let-60 cDNAs and the mek-2(ku114) strain; M. Koga, Y. Ohshima, N. Hisamoto and K. Matsumoto for pEF1a::GFP; A. Fire for vectors; and C. Bargmann, T. Schedl and Y. Emori for their comments and advice. All other nematode strains used in this study were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research

Correspondence and requests for materials should be addressed to Y.I. (e-mail: iino@ims.u-tokvo.ac.ip).

An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells

Scott M. Hammond*, Emily Bernstein†‡, David Beach*§ & Gregory J. Hannon‡

- * Genetica, Inc., P.O. Box 99, Cold Spring Harbor, New York 11724, USA † Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- § Wolfson Institute for Biological Sciences, University College London, Gower Street, London WC1E 6BT, UK
- ‡ Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA

In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner¹⁻⁷. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression^{1,6,8-10}. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, ~25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.

Although double-stranded RNAs (dsRNAs) can provoke gene silencing in numerous biological contexts including *Drosophila*^{11,12}, the mechanisms underlying this phenomenon have remained mostly unknown. We therefore wanted to establish a biochemically tractable model in which such mechanisms could be investigated.

Transient transfection of cultured, *Drosophila* S2 cells with a *lacZ* expression vector resulted in β -galactosidase activity that was easily detectable by an in situ assay (Fig. 1a). This activity was greatly reduced by co-transfection with a dsRNA corresponding to the first 300 nucleotides of the *lacZ* sequence, whereas co-transfection with a control dsRNA (CD8) (Fig. 1a) or with single-stranded RNAs of either sense or antisense orientation (data not shown) had little or no effect. This indicated that dsRNAs could interfere, in a sequencespecific fashion, with gene expression in cultured cells.

To determine whether RNA interference (RNAi) could be used to target endogenous genes, we transfected S2 cells with a dsRNA corresponding to the first 540 nucleotides of Drosophila cyclin E, a gene that is essential for progression into S phase of the cell cycle. During log-phase growth, untreated S2 cells reside primarily in G2/ M (Fig. 1b). Transfection with lacZ dsRNA had no effect on cellcycle distribution, but transfection with the cyclin E dsRNA caused a G1-phase cell-cycle arrest (Fig. 1b). The ability of cyclin E dsRNA to provoke this response was length-dependent. Double-stranded RNAs of 540 and 400 nucleotides were quite effective, whereas

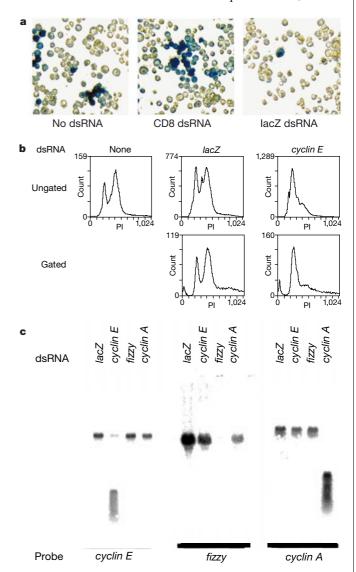
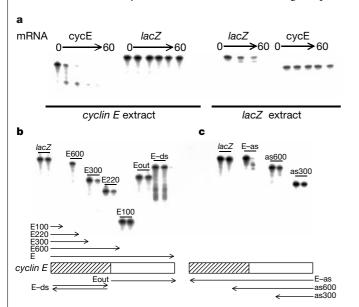


Figure 1 RNAi in S2 cells. a, Drosophila S2 cells were transfected with a plasmid that directs lacZ expression from the copia promoter in combination with dsRNAs corresponding to either human CD8 or lacZ, or with no dsRNA, as indicated. **b**, S2 cells were co-transfected with a plasmid that directs expression of a GFP-US9 fusion protein (12) and dsRNAs of either lacZ or cyclin E, as indicated. Upper panels show FACS profiles of the bulk population. Lower panels show FACS profiles from GFP-positive cells. **c**, Total RNA was extracted from cells transfected with lacZ, cyclin E, fizzy or cyclin A dsRNAs, as indicated. Northern blots were hybridized with sequences not present in the transfected


letters to nature

dsRNAs of 200 and 300 nucleotides were less potent. Double-stranded *cyclin E* RNAs of 50 or 100 nucleotides were inert in our assay, and transfection with a single-stranded, antisense *cyclin E* RNA had virtually no effect (see Supplementary Information).

One hallmark of RNAi is a reduction in the level of mRNAs that are homologous to the dsRNA. Cells transfected with the *cyclin E* dsRNA (bulk population) showed diminished endogenous *cyclin E* mRNA as compared with control cells (Fig. 1c). Similarly, transfection of cells with dsRNAs homologous to *fizzy*, a component of the anaphase-promoting complex (APC) or *cyclin A*, a cyclin that acts in S, G2 and M, also caused reduction of their cognate mRNAs (Fig. 1c). The modest reduction in *fizzy* mRNA levels in cells transfected with *cyclin A* dsRNA probably resulted from arrest at a point in the division cycle at which *fizzy* transcription is low^{14,15}. These results indicate that RNAi may be a generally applicable method for probing gene function in cultured *Drosophila* cells.

The decrease in mRNA levels observed upon transfection of specific dsRNAs into *Drosophila* cells could be explained by effects at transcriptional or post-transcriptional levels. Data from other systems have indicated that some elements of the dsRNA response may affect mRNA directly (reviewed in refs 1 and 6). We therefore sought to develop a cell-free assay that reflected, at least in part, RNAi.

S2 cells were transfected with dsRNAs corresponding to either cyclin E or lacZ. Cellular extracts were incubated with synthetic mRNAs of lacZ or cyclin E. Extracts prepared from cells transfected with the 540-nucleotide cyclin E dsRNA efficiently degraded the cyclin E transcript; however, the lacZ transcript was stable in these lysates (Fig. 2a). Conversely, lysates from cells transfected with the lacZ dsRNA degraded the lacZ transcript but left the cyclin E mRNA intact. These results indicate that RNAi ablates target mRNAs through the generation of a sequence-specific nuclease activity. We have termed this enzyme RISC (RNA-induced silencing complex).



Figure 2 RNAi *in vitro*. **a**, Transcripts corresponding to either the first 600 nucleotides of *Drosophila cyclin E* (E600) or the first 800 nucleotides of *lacZ* (Z800) were incubated in lysates derived from cells that had been transfected with either *lacZ* or *cyclin E* (cycE) dsRNAs, as indicated. Time points were 0, 10, 20, 30, 40 and 60 min for *cyclin E* and 0, 10, 20, 30 and 60 min for *lacZ*. **b**, Transcripts were incubated in an extract of S2 cells that had been transfected with *cyclin E* dsRNA (cross-hatched box, below). Transcripts corresponded to the first 800 nucleotides of *lacZ* or the first 600, 300, 220 or 100 nucleotides of *cyclin E*, as indicated. Eout is a transcript derived from the portion of the *cyclin E* cDNA not contained within the transfected dsRNA. E-ds is identical to the dsRNA that had been transfected into S2 cells. Time points were 0 and 30 min. **c**, Synthetic transcripts complementary to the complete *cyclin E* cDNA (Eas) or the final 600 nucleotides (Eas600) or 300 nucleotides (Eas300) were incubated in extract for 0 or 30 min.

Although we occasionally observed possible intermediates in the degradation process (see Fig. 2), the absence of stable cleavage end-products indicates an exonuclease (perhaps coupled to an endo-nuclease). However, it is possible that the RNAi nuclease makes an initial endonucleolytic cut and that non-specific exonucleases in the extract complete the degradation process¹⁶. In addition, our ability to create an extract that targets *lacZ in vitro* indicates that the presence of an endogenous gene is not required for the RNAi response.

To examine the substrate requirements for the dsRNA-induced, sequence-specific nuclease activity, we incubated a variety of cyclin-E-derived transcripts with an extract derived from cells that had been transfected with the 540-nucleotide cyclin E dsRNA (Fig. 2b, c). Just as a length requirement was observed for the transfected dsRNA, the RNAi nuclease activity showed a dependence on the size of the RNA substrate. Both a 600-nucleotide transcript that extends slightly beyond the targeted region (Fig. 2b) and an ~1-kilobase (kb) transcript that contains the entire coding sequence (data not shown) were completely destroyed by the extract. Surprisingly, shorter substrates were not degraded as efficiently. Reduced activity was observed against either a 300- or a 220-nucleotide transcript, and a 100-nucleotide transcript was resistant to nuclease in our assay. This was not due solely to position effects because \sim 100nucleotide transcripts derived from other portions of the transfected dsRNA behaved similarly (data not shown). As expected, the nuclease activity (or activities) present in the extract could also recognize the antisense strand of the cyclin E mRNA. Again, substrates that contained a substantial portion of the targeted region were degraded efficiently whereas those that contained a shorter stretch of homologous sequence (~130 nucleotides) were recognized inefficiently (Fig. 2c, as600). For both the sense and antisense strands, transcripts that had no homology with the transfected dsRNA (Fig. 2b, Eout; Fig. 2c, as300) were not degraded. Although we cannot exclude the possibility that nuclease specificity could have migrated beyond the targeted region, the resistance of transcripts that do not contain homology to the dsRNA is consistent with data from C. elegans. Double-stranded RNAs homologous to an upstream cistron have little or no effect on a linked downstream cistron, despite the fact that unprocessed, polycistronic mRNAs can be readily detected^{17,18}. Furthermore, the nuclease was inactive against a dsRNA identical to that used to provoke the RNAi response in vivo (Fig. 2b). In the in vitro system, neither a 5' cap nor a poly(A) tail was required, as such transcripts were degraded as efficiently as uncapped and non-polyadenylated RNAs.

Gene silencing provoked by dsRNA is sequence specific. A plausible mechanism for determining specificity would be incorporation of nucleic-acid guide sequences into the complexes that accomplish silencing¹⁹. In accord with this idea, pre-treatment of

Figure 3 Substrate requirements of the RISC. Extracts were prepared from cells transfected with *cyclin E* dsRNA. Aliquots were incubated for 30 min at 30 °C before the addition of either the *cyclin E* (E600) or *lacZ* (Z800) substrate. Individual 20- μ l aliquots, as indicated, were pre-incubated with 1 mM CaCl₂ and 5 mM EGTA, 1 mM CaCl₂, 5 mM EGTA and 60 U of micrococcal nuclease, 1 mM CaCl₂ and 60 U of micrococcal nuclease or 10 U of DNase I (Promega) and 5 mM EGTA. After the 30-min pre-incubation, EGTA was added to those samples that lacked it. Yeast tRNA (1 μ g) was added to all samples. Time points were at 0 and 30 min.

extracts with a Ca²⁺-dependent nuclease (micrococcal nuclease) abolished the ability of these extracts to degrade cognate mRNAs (Fig. 3). Activity could not be rescued by addition of non-specific RNAs such as yeast transfer RNA. Although micrococcal nuclease can degrade both DNA and RNA, treatment of the extract with DNAse I had no effect (Fig. 3). Sequence-specific nuclease activity, however, did require protein (data not shown). Together, our results support the possibility that the RNAi nuclease is a ribonucleoprotein, requiring both RNA and protein components. Biochemical fractionation (see below) is consistent with these components being associated in extract rather than being assembled on the target mRNA after its addition.

In plants, the phenomenon of co-suppression has been associated with the existence of small (~25-nucleotide) RNAs that correspond to the gene that is being silenced¹⁹. To address the possibility that a similar RNA might exist in Drosophila and guide the sequencespecific nuclease in the choice of substrate, we partially purified our activity through several fractionation steps. Crude extracts contained both sequence-specific nuclease activity and abundant, heterogeneous RNAs homologous to the transfected dsRNA (Figs 2 and 4a). The RNAi nuclease fractionated with ribosomes in a high-speed centrifugation step. Activity could be extracted by treatment with high salt, and ribosomes could be removed by an additional centrifugation step. Chromatography of soluble nuclease over an anion-exchange column resulted in a discrete peak of activity (Fig. 4b, cyclin E). This retained specificity as it was inactive against a heterologous mRNA (Fig. 4b, lacZ). Active fractions also contained an RNA species of 25 nucleotides that is homologous to the cyclin E target (Fig. 4b, northern). The band observed on northern blots may represent a family of discrete RNAs because it could be detected with probes specific for both the sense and antisense cyclin E sequences and with probes derived from distinct segments of the dsRNA (data not shown). At present, we cannot determine whether the 25-nucleotide RNA is present in the nuclease complex in a double-stranded or single-stranded form.

RNA interference allows an adaptive defence against both exogenous and endogenous dsRNAs, providing something akin to a dsRNA immune response. Our data, and that of others¹⁹, is con-

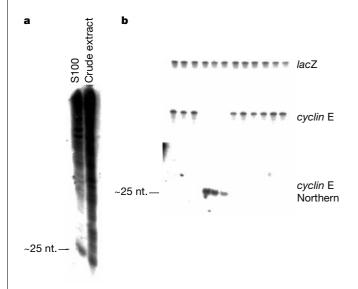


Figure 4 The RISC contains a potential guide RNA. a, Northern blots of RNA from either a crude lysate or the S100 fraction (containing the soluble nuclease activity, see Methods) were hybridized to a riboprobe derived from the sense strand of the cyclin E mRNA. **b**, Soluble *cyclin-E*-specific nuclease activity was fractionated as described in Methods. Fractions from the anion-exchange resin were incubated with the lacZ, control substrate (upper panel) or the cyclin E substrate (centre panel). Lower panel, RNA from each fraction was analysed by northern blotting with a uniformly labelled transcript derived from sense strand of the cyclin E cDNA. DNA oligonucleotides were used as size markers.

sistent with a model in which dsRNAs present in a cell are converted, either through processing or replication, into small specificity determinants of discrete size in a manner analogous to antigen processing. Our results suggest that the post-transcriptional component of dsRNA-dependent gene silencing is accomplished by a sequence-specific nuclease that incorporates these small RNAs as guides that target specific messages based upon sequence recognition. The identical size of putative specificity determinants in plants¹⁹ and animals predicts a conservation of both the mechanisms and the components of dsRNA-induced, post-transcriptional gene silencing in diverse organisms. In plants, dsRNAs provoke not only post-transcriptional gene silencing but also chromatin remodelling and transcriptional repression^{20,21}. It is now critical to determine whether conservation of gene-silencing mechanisms also exists at the transcriptional level and whether chromatin remodelling can be directed in a sequence-specific fashion by these same dsRNA-derived guide sequences.

Note added in proof: Recently, Tuschl et al. have reported the development of cell-free extracts from *Drosophila* embryos that can carry out RNAi (T. Tuschl, P. D. Zamore, D. P. Bartel and P. A. Sharp, Genes Dev. 13, 3191–3197; 1999). Their results also indicate that the RNAi is accomplished at least in part by nuclease degradation of targeted mRNAs.

Methods

Cell culture and RNA methods

S2 (ref. 22) cells were cultured at 27 °C in 90% Schneider's insect media (Sigma), 10% heat inactivated fetal bovine serum (FBS). Cells were transfected with dsRNA and plasmid DNA by calcium phosphate co-precipitation²³. Identical results were observed when cells were transfected using lipid reagents (for example, Superfect, Qiagen). For FACS analysis, cells were additionally transfected with a vector that directs expression of a green fluorescent protein (GFP)-US9 fusion protein¹³. These cells were fixed in 90% ice-cold ethanol and stained with propidium iodide at 25 µg ml⁻¹. FACS was performed on an Elite flow cytometer (Coulter). For northern blotting, equal loading was ensured by overprobing blots with a control complementary DNA (RP49). For the production of dsRNA, transcription templates were generated by polymerase chain reaction such that they contained T7 promoter sequences on each end of the template. RNA was prepared using the RiboMax kit (Promega). Confirmation that RNAs were double stranded came from their complete sensitivity to RNAse III (a gift from A. Nicholson). Target mRNA transcripts were synthesized using the Riboprobe kit (Promega) and were gel purified before use.

Extract preparation

Log-phase S2 cells were plated on 15-cm tissue culture dishes and transfected with 30 μg dsRNA and 30 µg carrier plasmid DNA. Seventy-two hours after transfection, cells were harvested in PBS containing 5 mM EGTA washed twice in PBS and once in hypotonic buffer (10 mM HEPES pH 7.3, 6 mM β-mercaptoethanol), Cells were suspended in 0.7 packed-cell volumes of hypotonic buffer containing Complete protease inhibitors (Boehringer) and 0.5 units ml⁻¹ of RNasin (Promega). Cells were disrupted in a dounce homogenizer with a type B pestle, and lysates were centrifuged at 30,000g for 20 min. Supernatants were used in an in vitro assay containing 20 mM HEPES pH 7.3, 110 mM KOAc, 1 mM Mg(OAc)₂, 3 mM EGTA, 2 mM CaCl₂, 1 mM DTT. Typically, 5 μl extract was used in a 10 μl assay that contained also 10,000 c.p.m. synthetic mRNA substrate.

Extract fractionation

Extracts were centrifuged at 200,000g for 3 h and the resulting pellet (containing ribosomes) was extracted in hypotonic buffer containing also 1 mM MgCl₂ and 300 mM KOAc. The extracted material was spun at 100,000g for 1 h and the resulting supernatant was fractionated on Source 15Q column (Pharmacia) using a KCl gradient in buffer A (20 mM HEPES pH 7.0, 1 mM dithiothreitol, 1 mM MgCl₂). Fractions were assayed for nuclease activity as described above. For northern blotting, fractions were proteinase K/ SDS treated, phenol extracted, and resolved on 15% acrylamide 8M urea gels, RNA was electroblotted onto Hybond N+ and probed with strand-specific riboprobes derived from cyclin E mRNA. Hybridization was carried out in 500 mM NaPO₄ pH 7.0, 15% formamide, 7% SDS, 1% BSA. Blots were washed in 1 × SSC at 37-45°C

Received 26 November 1999; accepted 26 January 2000.

- 1. Sharp, P. A. RNAi and double-strand RNA. Genes Dev. 13, 139-141 (1999).
- 2. Sanchez-Alvarado, A. & Newmark, P. A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl Acad. Sci. USA 96, 5049-5054 (1999)
- 3. Lohmann, J. U., Endl, I. & Bosch, T. C. Silencing of developmental genes in Hydra. Dev. Biol. 214, 211-
- 4. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNAdependent RNA polymerase. Nature 399, 166-169 (1999).
- Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959-

letters to nature

- Montgomery, M. K. & Fire, A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. *Trends Genet.* 14, 225–228 (1998).
- Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998).
- Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).
- Ketting, R. F., Haverkamp, T. H. A., van Luenen, H. G. A. M. & Plasterk, R. H. A. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner Syndrome helicase and RnaseD. Cell 99, 133–141 (1999).
- Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560 (1997).
- Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).
- Misquitta, L. & Paterson, B. M. Targeted disruption of gene function in *Drosophila* by RNA interference: a role for nautilus in embryonic somatic muscle formation. *Proc. Natl Acad. Sci. USA* 96, 1451–1456 (1999).
- Kalejta, R. F., Brideau, A. D., Banfield, B. W. & Beavis, A. J. An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodine-based cell cycle analysis by flow cytometry. Exp. Cell. Res. 248, 322–328 (1999).
- 14. Wolf, D. A. & Jackson, P. K. Cell cycle: oiling the gears of anaphase. Curr. Biol. 8, R637–R639 (1998).
- Kramer, E. R., Gieffers, C., Holz, G., Hengstschlager, M. & Peters, J. M. Activation of the human anaphase-promoting complex by proteins of the CDC20/fizzy family. Curr. Biol. 8, 1207–1210 (1998).
- Shuttleworth, J. & Colman, A. Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J. 7, 427–434 (1988).
- Tabara, H., Grishok, A. & Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–432 (1998).
- Bosher, J. M., Dufourcq, P., Sookhareea, S. & Labouesse, M. RNA interference can target pre-mRNA. Consequences for gene expression in a *Caenorhabditis elegans* operon. *Genetics* 153, 1245–1256 (1999).
- Hamilton, J. A. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).
- Jones, L. A., Thomas, C. L. & Maule, A. J. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17, 6385–6393 (1998).
- Jones, L. A. et al. RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291–2301 (1999).
- Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp Morpho. 27, 353–365 (1972).
- Di Nocera, P. P. & Dawid, I. B. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl Acad. Sci. USA 80, 7095

 –7098 (1983).

Supplementary information is available on *Nature*'s World-Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of *Nature*.

Acknowledgements

We thank C.Velinzon and L. Rodgers for assistance with flow cytometry. Materials and advice were provided by A. Krainer, J. Yin and A. Nicholson. D.B. is supported by the Hugh and Catherine Stevenson Fund. G.J.H. is a Pew Scholar in the Biomedical Sciences. This work was supported in part by grants from the NIH (G.J.H.) and the US Army Breast Cancer Research Program (G.J.H.).

Correspondence and requests for materials should be addressed to G.J.H (e-mail: hannon@cshl.org).

A genetic link between co-suppression and RNA interference in *C. elegans*

René F. Ketting* & Ronald H. A. Plasterk*

Division of Molecular Biology, The Netherlands Cancer Institute, Centre for Biomedical Genetics, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Originally discovered in plants^{1,2}, the phenomenon of co-suppression by transgenic DNA has since been observed in many organisms from fungi³ to animals^{4–7}: introduction of transgenic copies of a gene results in reduced expression of the transgene as well as the endogenous gene. The effect depends on sequence identity between transgene and endogenous gene. Some cases of cosuppression resemble RNA interference (the experimental silencing of genes by the introduction of double-stranded RNA)⁸,

as RNA seems to be both an important initiator and a target in these processes⁹⁻¹³. Here we show that co-suppression in *Caenorhabditis elegans* is also probably mediated by RNA molecules. Both RNA interference^{14,15} and co-suppression¹⁶ have been implicated in the silencing of transposons. We now report that mutants of *C. elegans* that are defective in transposon silencing and RNA interference (*mut-2*, *mut-7*, *mut-8* and *mut-9*) are in addition resistant to co-suppression. This indicates that RNA interference and co-suppression in *C. elegans* may be mediated at least in part by the same molecular machinery, possibly through RNA-guided degradation of messenger RNA molecules.

We tested whether the MUT-7 protein, a putative 3'-5' exoribonuclease required for transposon silencing and RNA interference (RNAi)¹⁴, is also required for co-suppression in C. elegans. Cosuppression in C. elegans has been reported for a number of genes, including fem-1. As described previously, wild-type animals bearing a highly repetitive transgene containing multiple copies of the complete fem-1 gene show a feminization of the germline, phenocopying loss-of-function mutations of the fem-1 gene (Table 1). It has been shown that this effect depends on the presence of the *fem-1* promoter region⁷. When this region is not present, no feminization is observed, indicating that RNA is a mediator in co-suppression. We placed the same fem-1 transgene in a mut-7 mutant background and found that this feminization was no longer observed (Table 1). This result indicates that the RNA-mediated co-suppression effect of the fem-1 transgene has a genetic basis and that it requires a protein (MUT-7) that is also involved in the processes of RNAi and transposon silencing. Thus, the aberrant RNA molecules that have been postulated in co-suppression^{10,17} might be double-stranded RNA (dsRNA) molecules, also involved in RNAi⁸.

To test whether the dependence of co-suppression on *mut-7* is general, we analysed two other genes for which co-suppression effects have been described: *gld-1* (ref. 6) and *mrt-2* (S. Ahmed and J. Hodgkin, personal communication). *Gld-1* co-suppression leads to an absence of oocytes and a tumorous germline, whereas *mrt-2* co-suppression results in hypersensitivity to ionizing radiation (which is consistent with the loss-of-function phenotypes of both genes^{18,19}). Again, we find that the observed co-suppression effects

Table 1 Co-suppression of fem-1

	No. of animals with phenotype	
Genotype	Feminized	Wild type
Wild type; pKEx1534 mut-7(pk204); pkEx1534 rde-1(ne219); pkEx1539	28 0 30	2 27 1

Feminization of the germline by transgenes containing the fem-1 gene. pkEx1534 was generated by injection of fem-1 plasmid DNA into mut7(pk204) animals. This resulted in several non-co-suppressed transgenic lines (one containing the transgene pkEx1534). Restoration of mut-7 gene function results in feminization of the germline. Injection of the same DNA into rde-1(ne219) animals results in lines displaying high levels of feminization.

Table 2 Co-suppression of gld-1

	No. of animals with phenotype	
Genotype	Tumorous germline	Wild type
mut-7(pk204)/+; pkEx1533	32	4
mut-7(pk204); pkEx1533	4	35
Complete promoter in wild type*	7	0
Complete promoter in rde-1 (ne219)*	4	0
Deleted promoter in wild type*	0	3†
Promoter only in wild type*	0	11

Induction of a 'tumorous germline' phenotype 18 by a gld-1 multicopy transgene (pkEx1533), containing the complete gld-1 promoter.

[†]These three lines have no tumorous germline and produce oocytes. The strains produce some unfertilized eggs, indicative of a sperm defect, probably caused by a lower dosage of GLD-1 protein 18.

^{*} Present address: Hubrecht Laboratory, Centre for Biomedical Genetics, Uppsalalaan 8, 3584 CT Utrect, The Netherlands

^{*}The number of stable non-co-suppressed lines (designated wild type) or co-suppressed lines (tumorous germline) after injection is given; 31 (complete promoter in wild type), 22 (complete promoter in rde-1(ne219)), 32 (deleted promoter) and 107 (promoter only) F_1 transgenic animals were analysed.