
Lecture 9: Linear
Regression



Goals

• Linear regression in R

• Estimating parameters and hypothesis testing
with linear models

• Develop basic concepts of linear regression from
a probabilistic framework



Regression

• Technique used for the modeling and analysis of
numerical data

• Exploits the relationship between two or more
variables so that we can gain information about one of
them through knowing values of the other

• Regression can be used for prediction, estimation,
hypothesis testing, and modeling causal relationships



Regression Lingo

Y = X1 + X2 + X3

Dependent Variable

Outcome Variable

Response Variable

Independent Variable

Predictor Variable

Explanatory Variable



Why Linear Regression?

• Suppose we want to model the dependent variable Y in terms
of three predictors, X1, X2, X3

Y = f(X1, X2, X3)

• Typically will not have enough data to try and directly
estimate f

• Therefore, we usually have to assume that it has some
restricted form, such as linear

Y = X1 + X2 + X3



Linear Regression is a Probabilistic Model

• Much of mathematics is devoted to studying variables
that are deterministically related to one another
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• But we’re interested in understanding the relationship
between variables related in a nondeterministic fashion



A Linear Probabilistic Model

! 

"
0

! 

y

! 

x

! 

y =  "
0
 +  "

1
x +  #

• Definition: There exists parameters     ,    , and    , such that for
any fixed value of the independent variable x, the dependent
variable is related to x through the model equation
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Implications

• The expected value of Y is a linear function of X, but for fixed
x, the variable Y differs from its expected value by a random
amount

• Formally, let x* denote a particular value of the independent
variable x, then our linear probabilistic model says:

! 

E(Y |  x*) =  µY|x* =  mean value of Y when x is x *

! 

V (Y |  x*) =  "Y|x*

2
 =  variance of Y when x is x *



Graphical Interpretation
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• For example, if x = height and y = weight then               is the average

weight for all individuals 60 inches tall in the population
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One More Example
Suppose the relationship between the independent variable height

(x) and dependent variable weight (y) is described by a simple
linear regression model with true regression line

y = 7.5 + 0.5x and

• Q2: If x = 20 what is the expected value of Y?

! 

µ
Y |x =20 =  7.5 +  0.5(20) =  17.5

• Q3: If x = 20 what is P(Y > 22)?

• Q1: What is the interpretation of      = 0.5?
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Estimating Model Parameters

• Point estimates of      and      are obtained by the principle of least
squares

! 

ˆ " 
0

! 

ˆ " 
1

! 

f ("
0
,"
1
) = yi # ("0 + "

1
xi)[ ]

i=1

n

$ 2

! 

"
0

! 

y

! 

x

•

! 

ˆ " 
0

= y # ˆ " 
1
x 



Predicted and Residual Values

• Predicted, or fitted, values are values of y predicted by the least-
squares regression line obtained by plugging in x1,x2,…,xn into the
estimated regression line
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• Residuals are the deviations of observed and predicted values

! 

e
1

= y
1
" ˆ y 

1

e
2

= y
2
" ˆ y 

2

! 

y

! 

x
! 

e
1

! 

e
2

! 

e
3

! 

ˆ y 
1

! 

y
1



Residuals Are Useful!
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• They allow us to calculate the error sum of squares (SSE):

• Which in turn allows us to estimate     :
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• As well as an important statistic referred to as the coefficient of
determination:
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Multiple Linear Regression

• Extension of the simple linear regression model to two or
more independent variables
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• Partial Regression Coefficients: βi ≡ effect on the
dependent variable when increasing the ith independent
variable by 1 unit, holding all other predictors
constant

Expression = Baseline + Age + Tissue + Sex + Error



Categorical Independent Variables

• Qualitative variables are easily incorporated in regression
framework through dummy variables

• Simple example: sex can be coded as 0/1

• What if my categorical variable contains three levels:

xi =

0 if AA
1 if AG
2 if GG



Categorical Independent Variables

• Previous coding would result in colinearity

• Solution is to set up a series of dummy variable. In general
for k levels you need k-1 dummy variables

x1 =
1 if AA
0 otherwise

x2 =
1 if AG
0 otherwise

AA

AG

GG

x1 x2

1
1
0

0
00



Hypothesis Testing: Model Utility Test (or
Omnibus Test)

• The first thing we want to know after fitting a model is whether
any of the independent variables (X’s) are significantly related to
the dependent variable (Y):
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Equivalent ANOVA Formulation of Omnibus Test

• We can also frame this in our now familiar ANOVA framework

- partition total variation into two components: SSE (unexplained
variation) and SSR (variation explained by linear model)



Equivalent ANOVA Formulation of Omnibus Test

• We can also frame this in our now familiar ANOVA framework
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Rejection Region :  F",k,n#(k+1)

- partition total variation into two components: SSE (unexplained
variation) and SSR (variation explained by linear model)
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F Test For Subsets of Independent Variables

• A powerful tool in multiple regression analyses is the ability to
compare two models

• For instance say we want to compare:
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f =
(SSER " SSEF ) /(k " l)

SSEF /([n " (k +1)]

• Again, another example of ANOVA:

SSER = error sum of squares for
reduced model with   predictors
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SSEF = error sum of squares for
full model with k predictors



Example of Model Comparison

• We have a quantitative trait and want to test the effects at two
markers, M1 and M2.

! 

f =
(SSER " SSEF ) /(3" 2)

SSEF /([100 " (3+1)]
=
(SSER " SSEF )

SSEF /96

Full Model: Trait = Mean + M1 + M2 + (M1*M2) + error

Reduced Model: Trait = Mean + M1 + M2 + error
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Hypothesis Tests of Individual Regression
Coefficients

• Hypothesis tests for each     can be done by simple t-tests:
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• Confidence Intervals are equally easy to obtain:
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Checking Assumptions
• Critically important to examine data and check assumptions

underlying the regression model

  Outliers
  Normality
  Constant variance
  Independence among residuals

• Standard diagnostic plots include:
  scatter plots of y versus xi (outliers)
  qq plot of residuals (normality)
  residuals versus fitted values (independence, constant variance)
  residuals versus xi (outliers, constant variance)

• We’ll explore diagnostic plots in more detail in R



Fixed -vs- Random Effects Models

• In ANOVA and Regression analyses our independent variables can
be treated as Fixed or Random

• Fixed Effects: variables whose levels are either sampled
exhaustively or are the only ones considered relevant to the
experimenter

• Random Effects: variables whose levels are randomly sampled
from a large population of levels

Expression = Baseline + Population + Individual + Error

• Example from our recent AJHG paper:


