
Lecture 10: Multiple Testing



Goals

• Correcting for multiple testing in R

• Methods for addressing multiple testing (FWER
and FDR)

• Define the multiple testing problem and related
concepts
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Why Multiple Testing Matters

Genomics = Lots of Data = Lots of Hypothesis Tests

A typical microarray experiment might result in performing
10000 separate hypothesis tests. If we use a standard p-value

cut-off of 0.05, we’d expect 500 genes to be deemed
“significant” by chance.



• In general, if we perform m hypothesis tests, what is the
probability of at least 1 false positive?

Why Multiple Testing Matters

P(Making an error) = α

P(Not making an error) = 1 - α

P(Not making an error in m tests) = (1 - α)m

P(Making at least 1 error in m tests) = 1 - (1 - α)m



Probability of At Least 1 False Positive



Counting Errors
              Assume we are testing H1, H2, …, Hm

    m0 = # of true hypotheses   R = # of rejected hypotheses

V   =  # Type I errors [false positives]
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What Does Correcting for Multiple
Testing Mean?

• When people say “adjusting p-values for the number of
hypothesis tests performed” what they mean is
controlling the Type I error rate

• Very active area of statistics - many different methods
have been described

• Although these varied approaches have the same goal,
they go about it in fundamentally different ways



Different Approaches To Control Type I Errors

• Per comparison error rate (PCER): the expected value of the number
of Type I errors over the number of hypotheses,

                           PCER = E(V)/m

• Per-family error rate (PFER): the expected number of Type I errors,

                           PFE = E(V).

• Family-wise error rate: the probability of at least one type I error

                           FEWR = P(V ≥ 1)

• False discovery rate (FDR) is the expected proportion of Type I errors
among the rejected hypotheses

                           FDR = E(V/R | R>0)P(R>0)

•  Positive false discovery rate (pFDR): the rate that discoveries are
false

                           pFDR = E(V/R | R > 0)



Digression: p-values

• Implicit in all multiple testing procedures is the
assumption that the distribution of p-values is
“correct”

• This assumption often is not valid for genomics data
where p-values are obtained by asymptotic theory

• Thus, resampling methods are often used to calculate
calculate p-values



Permutations

1. Analyze the problem: think carefully about the null and
alternative hypotheses

2. Choose a test statistic

3. Calculate the test statistic for the original labeling of the
observations

4. Permute the labels and recalculate the test statistic

• Do all permutations: Exact Test

• Randomly selected subset: Monte Carlo Test

5. Calculate p-value by comparing where the observed test
statistic value lies in the permuted distributed of test statistics



Example: What to Permute?

Gene Case 1 Case 2 Case 3 Case 4 Control 1 Control 2 Control 3 Control 4

1 X11 X12 X13 X14 X15 X16 X17 X18

2 X21 X22 X23 X24 X25 X26 X27 X28

3 X31 X32 X33 X34 X35 X36 X37 X38

4 X41 X42 X43 X44 X45 X46 X47 X48

m Xm1 Xm2 Xm3 Xm4 Xm5 Xm6 Xm7 Xm8

• Gene expression matrix of m genes measured in 4 cases
and 4 controls

...
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...
...

...
...

...
...

...



Back To Multiple Testing: FWER

• Many procedures have been developed to control the
Family Wise Error Rate (the probability of at least one
type I error):

P(V ≥ 1)

• Two general types of FWER corrections:

1. Single step: equivalent adjustments made to each
p-value

2. Sequential: adaptive adjustment made to each p-
value



Single Step Approach: Bonferroni

• Very simple method for ensuring that the overall Type I
error rate of α is maintained when performing m
independent hypothesis tests

• Rejects any hypothesis with p-value ≤ α/m:

! 

˜ p j = min[mp j ,  1]

• For example, if we want to have an experiment wide Type I
error rate of 0.05 when we perform 10,000 hypothesis tests,
we’d need a p-value of 0.05/10000 = 5 x 10-6 to declare
significance



Philosophical Objections to Bonferroni
Corrections

“Bonferroni adjustments are, at best, unnecessary
and, at worst, deleterious to sound statistical
inference” Perneger (1998)

• Counter-intuitive: interpretation of finding depends on the
number of other tests performed

• The general null hypothesis (that all the null hypotheses are
true) is rarely of interest

• High probability of type 2 errors, i.e. of not rejecting the
general null hypothesis when important effects exist



FWER: Sequential Adjustments

• Simplest sequential method is Holm’s Method

 Order the unadjusted p-values such that  p1 ≤ p2 ≤ … ≤ pm

 For control of  the FWER at level α, the step-down Holm adjusted p-
values are

 The point here is that we don’t multiply every pi by the same factor m

! 

˜ p j = min[(m " j +1) • p j ,  1]
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• For example, when m = 10000:



Who Cares About Not Making ANY
Type I Errors?

• FWER is appropriate when you want to guard against
ANY false positives

• However, in many cases (particularly in genomics) we
can live with a certain number of false positives

• In these cases, the more relevant quantity to control is
the false discovery rate (FDR)



False Discovery Rate
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V   =  # Type I errors [false positives]

• False discovery rate (FDR) is designed to control the proportion
of false positives among the set of rejected hypotheses (R)



FDR vs FPR
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Benjamini and Hochberg FDR

• To control FDR at level δ:

! 

p( j) " #
j

m

2. Then find the test with the highest rank, j, for which the p
value, pj, is less than or equal to (j/m) x δ

1. Order the unadjusted p-values: p1 ≤ p2 ≤ … ≤ pm

3. Declare the tests of rank 1, 2, …, j as significant



B&H FDR Example

00.0450.9009
00.0500.99310

00.0400.7818
00.0350.6417
00.0300.4506
00.0250.3965
00.0200.2054

00.0150.1653
10.0100.0092
10.0050.00081

Reject H0 ?(j/m)× δP-valueRank (j)

Controlling the FDR at δ = 0.05



Storey’s positive FDR (pFDR)
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• Since P(R > 0) is ~ 1 in most genomics experiments FDR
and pFDR are very similar

• Omitting P(R > 0) facilitated development of a measure of
significance in terms of the FDR for each hypothesis



What’s a q-value?

• q-value is defined as the minimum FDR that can be attained when
calling that “feature” significant (i.e., expected proportion of false
positives incurred when calling that feature significant)

• The estimated q-value is a function of the p-value for that test
and the distribution of the entire set of p-values from the family of
tests being considered (Storey and Tibshiriani 2003)

• Thus, in an array study testing for differential expression, if gene X
has a q-value of 0.013 it means that 1.3% of genes that show p-
values at least as small as gene X are false positives



Estimating The Proportion of Truly Null
Tests

Distribution of P-values under the null
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• Under the null hypothesis p-values are expected to be uniformly
distributed between 0 and 1
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Estimating The Proportion of Truly Null
Tests

• Under the alternative hypothesis p-values are skewed towards 0



Estimating The Proportion of Truly Null
Tests

• Combined distribution is a mixture of p-values from the null and
alternative hypotheses
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Estimating The Proportion of Truly Null
Tests

• For p-values greater than say 0.5, we can assume they mostly
represent observations from the null hypothesis
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Definition of π0

•      is the proportion of truly null tests:
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• 1 -     is the proportion of truly alternative tests (very useful!)
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