Lecture 10: Multiple Testing

Goals

Define the multiple testing problem and related concepts

Methods for addressing multiple testing (FWER and FDR)

• Correcting for multiple testing in R

Type I and II Errors

Actual Situation "Truth"

Decision	H ₀ True	H_0 False
Do Not Reject H _o	Correct Decision 1 - α	Incorrect Decision Type II Error β
Rejct H _o	Incorrect Decision Type I Error α	Correct Decision 1 - β

 \mathbf{i}

 $\alpha = P(Type \ I \ Error) \quad \beta = P(Type \ I \ Error)$

Why Multiple Testing Matters

Genomics = Lots of Data = Lots of Hypothesis Tests

A typical microarray experiment might result in performing 10000 separate hypothesis tests. If we use a standard p-value cut-off of 0.05, we'd expect **500** genes to be deemed "significant" by chance.

Why Multiple Testing Matters

• In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?

P(Making an error) = α

P(Not making an error) = 1 - α

P(Not making an error in m tests) = $(1 - \alpha)^m$

P(Making at least 1 error in m tests) = 1 - $(1 - \alpha)^m$

Probability of At Least 1 False Positive

Counting Errors

Assume we are testing $H^1, H^2, ..., H^m$

 $m_0 = #$ of true hypotheses R = # of rejected hypotheses

	Null	Alternative	
	True	True	Total
Not Called Significant	U	Τ	<i>m - R</i>
Called Significant	V	S	R
	m ₀	<i>m-m</i> ₀	m

V = # Type I errors [false positives]

What Does Correcting for Multiple Testing Mean?

- When people say "adjusting p-values for the number of hypothesis tests performed" what they mean is controlling the Type I error rate
- Very active area of statistics many different methods have been described
- Although these varied approaches have the same goal, they go about it in fundamentally different ways

Different Approaches To Control Type I Errors

• **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses,

PCER = E(V)/m

• Per-family error rate (PFER): the expected number of Type I errors,

PFE = E(V).

• Family-wise error rate: the probability of at least one type I error

FEWR = $P(V \ge 1)$

• False discovery rate (FDR) is the expected proportion of Type I errors among the rejected hypotheses

 $FDR = E(V/R \mid R>0)P(R>0)$

• **Positive false discovery** rate (pFDR): the rate that discoveries are false

$$PFDR = E(V/R \mid R > 0)$$

Digression: p-values

- Implicit in all multiple testing procedures is the assumption that the distribution of p-values is "correct"
- This assumption often is not valid for genomics data where p-values are obtained by asymptotic theory

• Thus, resampling methods are often used to calculate calculate p-values

Permutations

- 1. Analyze the problem: think carefully about the null and alternative hypotheses
- 2. Choose a test statistic
- 3. Calculate the test statistic for the original labeling of the observations
- 4. Permute the labels and recalculate the test statistic
 - Do all permutations: Exact Test
 - Randomly selected subset: Monte Carlo Test
- 5. Calculate p-value by comparing where the observed test statistic value lies in the permuted distributed of test statistics

Example: What to Permute?

Gene expression matrix of m genes measured in 4 cases
and 4 controls

Gene	Case 1	Case 2	Case 3	Case 4	Control 1	Control 2	Control 3	Control 4
1	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇	X ₁₈
2	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅	X ₂₆	X ₂₇	X ₂₈
3	X ₃₁	X ₃₂	X ₃₃	X ₃₄	X ₃₅	X ₃₆	X ₃₇	X ₃₈
4	X ₄₁	X ₄₂	X ₄₃	X ₄₄	X ₄₅	X ₄₆	X ₄₇	X ₄₈
:	•	•				:	•	:
•	-	•	•	-	•	•	•	•
m	X _{m1}	X _{m2}	X _{m3}	X_{m4}	X _{m5}	X _{m6}	X _{m7}	X _{m8}

Back To Multiple Testing: FWER

 Many procedures have been developed to control the Family Wise Error Rate (the probability of at least one type I error):

 $\mathsf{P}(\mathsf{V} \ge 1)$

- Two general types of FWER corrections:
 - 1. Single step: equivalent adjustments made to each p-value
 - 2. Sequential: adaptive adjustment made to each p-value

Single Step Approach: Bonferroni

- Very simple method for ensuring that the overall Type I error rate of α is maintained when performing m independent hypothesis tests
- Rejects any hypothesis with p-value $\leq \alpha/m$:

$$\tilde{p}_j = \min[mp_j, 1]$$

For example, if we want to have an experiment wide Type I error rate of 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of 0.05/10000 = 5 x 10⁻⁶ to declare significance

Philosophical Objections to Bonferroni Corrections

- "Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)
- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of type 2 errors, i.e. of not rejecting the general null hypothesis when important effects exist

FWER: Sequential Adjustments

- Simplest sequential method is Holm's Method
 - > Order the unadjusted p-values such that $p_1 \le p_2 \le \ldots \le p_m$
 - > For control of the FWER at level α , the step-down Holm adjusted p-values are

$$\tilde{p}_j = \min[(m - j + 1) \bullet p_j, 1]$$

- > The point here is that we don't multiply every p_i by the same factor m
- For example, when m = 10000:

$$\tilde{p}_1 = 10000 \bullet p_1, \, \tilde{p}_2 = 9999 \bullet p_2, ..., \tilde{p}_m = 1 \bullet p_m$$

Who Cares About Not Making ANY Type I Errors?

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can live with a certain number of false positives
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)

False Discovery Rate

	Null	Alternative	
	True	True	Total
Not Called Significant	U	Τ	<i>m - R</i>
Called Significant	V	S	R
	m ₀	<i>m-m</i> ₀	m
V =	# Type I erro	ors [false positives]]

• False discovery rate (FDR) is designed to control the proportion of false positives **among the set of rejected hypotheses** (R)

FDR vs FPR

	Null	Alternative	
	True	True	Total
Not Called Significant	U	Τ	<i>m - R</i>
Called Significant	V	S	R
	m ₀	<i>m-m</i> ₀	m

$$FDR = \frac{V}{R} \qquad FPR = \frac{V}{m_0}$$

Benjamini and Hochberg FDR

• To control FDR at level δ :

1. Order the unadjusted p-values: $p_1 \le p_2 \le \ldots \le p_m$

- 2. Then find the test with the highest rank, j, for which the p value, p_i , is less than or equal to (j/m) x δ
- 3. Declare the tests of rank 1, 2, ..., j as significant

$$p(j) \leq \delta \frac{j}{m}$$

B&H FDR Example

Controlling the FDR at δ = 0.05

Rank (j)	P-value	(j/m)× δ	Reject H ₀ ?
1	0.0008	0.005	1
2	0.009	0.010	1
3	0.165	0.015	0
4	0.205	0.020	0
5	0.396	0.025	0
6	0.450	0.030	0
7	0.641	0.035	0
8	0.781	0.040	0
9	0.900	0.045	0
10	0.993	0.050	0

Storey's positive FDR (pFDR)

BH:
$$FDR = E\left[\frac{V}{R} | R > 0\right]P(R > 0)$$

Storey :
$$pFDR = E\left[\frac{V}{R} \mid R > 0\right]$$

- Since P(R > 0) is ~ 1 in most genomics experiments FDR and pFDR are very similar
- Omitting P(R > 0) facilitated development of a measure of significance in terms of the FDR for each hypothesis

What's a q-value?

- q-value is defined as the minimum FDR that can be attained when calling that "feature" significant (i.e., expected proportion of false positives incurred when calling that feature significant)
- The estimated q-value is a function of the p-value for that test and the distribution of the entire set of p-values from the family of tests being considered (Storey and Tibshiriani 2003)

 Thus, in an array study testing for differential expression, if gene X has a q-value of 0.013 it means that 1.3% of genes that show pvalues at least as small as gene X are false positives

• Under the null hypothesis p-values are expected to be uniformly distributed between 0 and 1

• Under the alternative hypothesis p-values are skewed towards 0

 Combined distribution is a mixture of p-values from the null and alternative hypotheses

• For p-values greater than say 0.5, we can assume they mostly represent observations from the null hypothesis

Definition of π_0

• $\hat{\pi}_0$ is the proportion of truly null tests:

• 1 - $\hat{\pi}_0$ is the proportion of truly alternative tests (very useful!)