

Complementation analysis of lac- mutations

1. Transfer F'lac⁺ into Lac⁻ mutant (e.g., lac⁻₁)

2. Allow recombination to take place to transfer mutation (lac_1) into F'lac

3. Conjugate F'lac carrying mutation (lac $_1$) into second lac $_$ strain (e.g., lac $_2$)

4. Examine whether F' $lac_{1}^{\text{-}}$ / $lac_{2}^{\text{-}}$ cells grow on lactose

	F'lac-1	F'lac-2	F'lac-3	F'lac-4
lac-1	_	_	+	+
lac-2	_	_	+	+
lac-3	+	+	_	_
lac-4	+	+	_	_
lac-5	_	_	+	+

Complementation group $I= lac^{-} 1, 2, 5$ Complementation group $II= lac^{-} 3, 4$

Coding assignments:

One set of mutants were betagalactosidase-, transport+ (= $lacZ^{-} lacY^{+}$)

Second set of mutants were betagalactosidase⁺ transport⁻ (= $lacZ^+$ $lacY^-$)

Why are most common constitutive mutants lacl ⁻ rather than lacO ⁻ ?	
How could one selectively isolate lacO ⁻ mutants?	