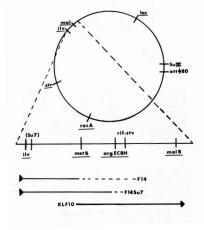
Traxler/411 March 6, 2009

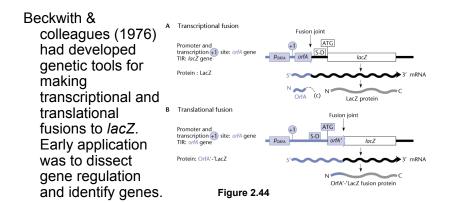

Revised reading: pp 109-114 (*new background*); 614-620 *Outline:*

- 1. Analysis of essential activities
 - RNA pol
 - The Mal proteins and the secretion apparatus for protein localization (sec genes)
 - Signal sequences
 - Sec apparatus
- 2. Synthetic lethality

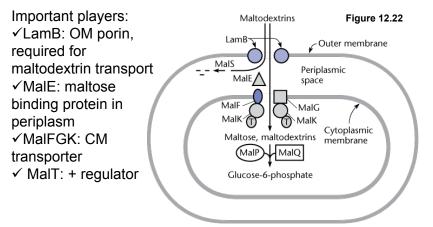
Recap: Analysis of E. coli RNA pol

Chromosomal markers: *metB-, rif^S, lacZ_{am}, recA-*; KLF10: *rif^R, metB+*. The Rif mutants had to keep the F' for growth on minimal glucose (no Met) Class 1 *rif^R/rif^R* (14/144): can switch KLF10 for F'*lac* on minimal lactose + Met

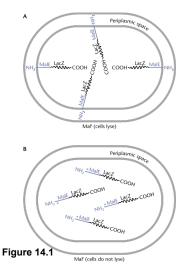
Class 2: *rif-/ rif*^R (90/144): class 2A: cannot lose KLF10 (must stay merodiploid; no Lac+) 82/90 class 2B: cannot lose KLF10 for F'*lac* but can lose KLF10 for F'14*su7* (and become Lac+) 8/90 are *rif*_{am}


Lessons of rif analysis

- rif is an essential gene (1 copy/chromosome)
- Mutations leading to Rif resistance are rare (only about 2x more common than those leading to suppressible amber mutations)
- Su7 tRNA inserts GIn at the amber codon. 4 amber mutations checked for *su*III supression, which inserts Tyr: 1/4 ambers produced functional protein.
- Data is consistent with "DNA blockage" model for recessive nature of *rif*^R; demonstrated that *rif^S/ rif*^R strains contain both sensitive and resistant forms of RNA pol (equal amounts)


Problem (1978): Localization of proteins to different cellular compartments

- After synthesis in cytoplasm, about 25% of all proteins made in a cell are destined to different cellular compartments. How is targeting and localization to these compartments accomplished?
- Cytoplasmic proteins seem to be without particular targeting signals (default localization)
- Brute force biochemistry had demonstrated that secreted proteins in eukaryotic model system are initially synthesized with N-terminal patches composed primarily of hydrophobic amino acids, cleaved during translocation into membrane vesicles
- Known that several periplasmic and outer membrane proteins in *E. coli* also made as "precursors" with N-terminal extensions.
- What is importance of N-terminal extensions? How similar is localization process in bacteria and euks?


LacZ fusions and molecular genetics

Maltose uptake & utilization

Mal^R selection

Geneticists reasoned that one could isolate mutations in important features of secretion targeting signals by **selection for growth** of MalE/LamB-LacZ strains on maltose

Variation in signal sequences

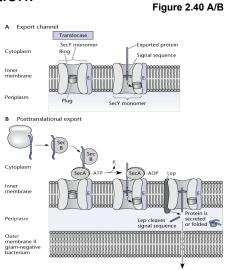
Protein Signal Sequence

LamB (OM) Met Lys Ala Thr Lys Leu Val Leu Gly Ala Val IIe Leu Gly Ser Thr Leu Leu Ala <u>Gly</u> ↓ (20/2+/14)

- MalE (peri) Met Lys Ile Lys Thr Gly Ala Arg Ile Leu Ala Leu Ser Ala Leu Thr Thr Met Met Phe Ser Ala Ser Ala Leu <u>Ala</u> ↓ (26/3+/17)
- βla (peri) Met Ser Ile Gln **His** Phe **Arg** Val Ala Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe <u>Ala</u> ↓ (23/2+/15)

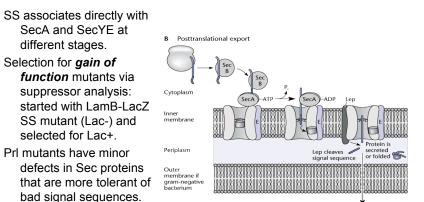
Analysis of signal sequences for protein secretion

- N-terminal extensions on proteins destined to cross the cytoplasmic membrane for final localization outside the cell (or in the periplasm/outer membrane of Gram neg. bacteria) have diverse amino acid sequences. Mutational analysis was important is showing what was important.
- Bacteria and euks with same general properties for these signal sequences (SS, or leader sequences).
- Putting a SS on a normally cytoplasmic protein leads to targeting to secretion machinery.


The first secretion mutation: secA

- Oliver and Beckwith constructed a strain that was *mal*⁺ and had a *malE-lacZ* fusion (LacZ-).
- They screened for spontaneous Lac+ at 30°C and identified 80 candidates.
- 2/80 Lac+ mutants did not grow at 42 °C (therefore are *temperature sensitive*) on any media; they are still ts when cured of the *malE-lacZ* fusion.

An essential function: Protein secretion


Oliver & Beckwith found secA. SecA needed for localization of MalE, LamB, PhoA, OmpF. Hfr mapping: *ts*+ of *secA*_{*ts*} at 0-7' Variations on screen gave several other

sec mutations.

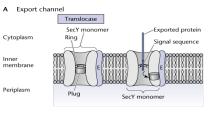

Mechanism of secretion

Figure 2.40 B

Prl mutants & synthetic lethality

- Prl mutants of SecE and SecY map near plug of Sec channel, probably facilitate its opening.
- Combining two particular *prl* membran particular *prl* mutations into same strain = cell death. This called *synthetic lethality.*

