Outline

- 1. Plasmids: the basics
- 2. Replication control
- 3. Plasmids: no cure?

Reading assignment

4. Partitioning

25 Feb 2009

Gene transfer mechanisms: pp 243-266

Examples of bacterial plasmids

See Tables 4.1/4.2/4.4

<u>Plasmid</u> (Inc)	<u>Size (Kb)</u> / <u>CN</u>	Host range	<u>Traits</u>
F (IncF1)	100 / 1	Narrow (<i>E. coli</i>)	Conjugative
R1 (IncF2)	90 / 1	Enterics	Conjugative; drug resistance
RK2 (IncP)	60/4-7	Broad: Gram neg.	Conjugative; drug resistance
Ti (IncRh1)	200 / 1	Agro/Rhizo	Conjugative; plant tumor-inducing
ColEl	9/30	Narrow	Mobilizable; colicins

Plasmids

Fundamental characteristics for each plasmid:

- Size/Copy number-from 3 to 200 Kb (or more) and from 1 to 100/cell; these are inversely related to each other
- Incompatibility group (Inc)-refers to whether 2 plasmids can be maintained in same cell
- · Host range-bacteria where the plasmid will replicate
- Host range/Inc usually determined by features of plasmid replication/partitioning

Plasmid replication

- The replication strategy that a plasmid uses directly affects its copy number, host range, and incompatibility group.
- Plasmid replication relies on the normal host DNA replication machinery.
- Plasmids will carry distinct origins of replication (*oriV*) and genes that enable and control the frequency of their replication.

Plasmid replication strategies

- Theta replication (A & B) common in Gplasmids like F, RK2, ColE1
- Rolling circle replication (in C; pT181) depends on Rep protein nicking at DSO; 3' OH primes synthesis of one strand; RNA pol makes primer for 2nd strand synthesis
- Rep protein used once, allowing control of initiation.

Fig. 4.4

Controlling θ replication: ColE1

- oriV replication initiation dependent upon RNA II hybridizing at origin; RNAse H trims RNA II; trimmed RNA II provides 3'OH for replication primer
- RNA I antagonizes RNA II processing: RNA I-RNA II complex is weak, made stronger by Rop
- Complete RNA I/II duplex removes *oriV* primer and prevents initiation

pT181: Another antisense RNA model

After replication: avoiding plasmid loss ("curing")

- Different challenges faced by low and high copy number plasmids at time of cell division.
- Several Several Several Copies/cell: Safety in numbers.

Fig. 4.8

After replication: keeping plasmids

Low copy number plasmids: plasmid multimers can change everything.

The best insurance: Partition

TABLE 4.3 Partitioning systems			
DNA	Par system	Centromere-like site ^a	
ParA-ParB homologs			
P1 prophage	ParA-ParB	parS	
F plasmid	SopA-SopB	sopC	
RK2	IncC2-KorB	O ₈ 3?	
ті	RepA-RepB	inc2?	
B. subtilis	Soj-Spo0J	parS	
C. crescentus	ParA-ParB	parS	
ParM-ParR homologs			
R1	ParM-ParR	parC	
Collb-P9	ParA-ParB	Unknown	
C. crescentus	MreB	Unknown	

" See Yao et al., Suggested Reading, and references therein.

Table 4.3

