- 411 Lecture Outline: 18/20 Feb 2009 Beth Traxler
 - 1. Convincing you to care about CRP-cAMP activation
 - 2. Moving on: λ and friends
 - 3. λ lysis-lysogeny choice
 - 4. P1: another temperate phage

Figure 12.6

Differences between *lac* -35/-10 regions and RNA pol σ^{70} consensus contribute to promoter's dependence on CRP-cAMP.

CAP stimulation of initiation

The temperate phage λ : lysis or lysogeny

λ Lytic replication

- Upon entering cell, linear λ DNA circularizes
- Early replication is θ form
- Late replication for production of progeny genomes is rolling circle, producing concatmers
- Sequence-specific cleavage of DNA concatamers at *cos* prior to packaging in progeny capsids

λ Lysis-lysogeny up close

N: making it all possible

Figure 8.8

Table 8.3

TABLE 8.3 Steps leading to lytic growth and lysogeny	
Steps leading to lytic growth	Steps leading to lysogeny
1. Transcription from $p_{\rm L}$ and $p_{\rm R}$	1. Same as for lytic growth
2. N and Cro are made	2. Same as for lytic growth
3. N allows CII expression	Same as for lytic growth
4. CII degraded	4. CII stable
Low CII concentration means that little CI is made	5a. High CII concentration activates p_{μ} and so Int is made and λ DNA integrates
	5b. High CII concentration activates p_{RE} and so CI is made
 Cro binds at O_R³ and O_L³, blocking binding by any low level of CI that is made 	6. CI outcompetes Cro, and so CI binding at $o_{\rm R}$ and $o_{\rm L}$ both represses $p_{\rm L}$ and $p_{\rm R}$ and positively autoregulates at $p_{\rm RM'}$ maintaining lysogeny
 Meanwhile, N allows O and P replication gene transcription 	
 A second antiterminator, Q, allows late-gene transcription, and so λ phage particles are made 	

Why call the genes cl, cll, cll

Figure 8.7

λ lysogens

Figure 8.11

- λ regulatory circuit is relatively simple: cl repressor only needs to bind to two operator regions to shut down lytic gene expression.
- cl activates its own transcription (from promoter near o_R2; Fig 8.10)
- Induction of lysogen (DNA damage/SOS response) leads to cl cleavage and loss of repression.

λ : resistance vs immunity

- Resistance to phage: the phage cannot infect.
- Immunity is the resistance of a lysogen to re-infection (super-infection) by a similar phage.

This can be observed: ability of lysogens to grown in a plaque of phage (turbid plaques). λ lysogens contain about 100 copies cl repressor/cell.

Phage P1

- Infects broad range of bacteria (using LPS core in OM of Gram neg. bacteria), but only replicates efficiently in *E. coli* (and close cousins)
- Linear 92.6 kb dsDNA genome: like many large phages, several accessory genes (*e.g.*, tRNA genes).
- DNA circularizes upon entry to cell.
- Temperate phage
- Approximately 120 genes, organized into 45 operons; only 4 operons involved in lysis-lysogeny choice.
- Lysogeny by P1 depends on its specific repressor protein, C1.

P1: genome & repressor C1

- 17 operons controlled by C1 repressor and transcribed by σ^{70} holoenzyme.
- *c1* gene located in one of the immunity regions of phage genome.
- Site-specific recombination system of *cre-lox*, which we'll talk about later in quarter

P1 lysogens

- Different from λ in that P1 prophage replicates separately from bacterial chromosome as a plasmid.
- P1 lysogens are stable (loss = 10⁻⁵)
- As the P1 genome is separate from the host cell chromosome, the P1 prophage must express additional functions than λ for maintenance of lysogeny.

these include?

P1 and molecular genetics

- Ability of P1 to move bacterial DNA around as "generalized transducing phage" has been important for molecular genetics.
- This property of P1 due to the mechanism of preparing dsDNA for packaging into capsids.
- Lytic growth of P1 produces majority of normal phage...

