411 Lecture Outline(13 Feb '09)

- 1. Strategies of regulation
- 2. Overview of RNA pol & Transcription Initiation
- 3. Repressors vs. Activators of transcription
- 4. What about CRP-cAMP?

Opportunities in regulation

- 1. Initiation of transcription
- 2. What else?

Transcription regulation

- 1. Initiation of transcription
 - -change in σ factors
 - direct stimulation by DNA sequence or structure
 - ►use of repressors
 - ►use of activators

A little review of transcription in Bacteria...

Figure 2.3

The Bacterial RNA pol has several subunits.

Stereotypical bacterial promoter

Figure 2.6

Promoter with this structure/sequence binds RNA pol holoenzyme with σ^{70} with high affinity. Different holoenzymes bind to distinct promoters.

Sequences recognized by different holoenzymes

Factor	Use	-35 Sequence (Upstream)	Spacing	-10 Sequence (Downstream)
σ ⁷⁰	normal	TTGACA	16-18 bp	ΤΑΤΑΑΤ
σ ²⁸	Motility Chemo- taxis	ΤΑΑΑ	16-17 bp	CCGATAT
σ ⁵⁴	Nitrogen Reg.	TTGGCA (-24)	6 bp	TTGCA (-12)

RNA pol/DNA/RNA complex

Figure 2.7

Figure 2.16

RNA pol contacts in the promoter and beyond

Figure 2.13

B: When you absolutely, positively want to transcribe lots of RNA...

Focusing on initiation...

Many opportunities to affect initiation of transcription...

A different model of regulation: ara Α AraC CAP site Three loci *p*_c $p_{\rm BAD}$ araC araB araD araA revealed in araO, mutational araO₁ aral analysis. (The L-Ribulose-5-(P) L-Ribulose L-Arabinose two not shown kinase isomerase epimerase . ; -、 here needed L-Arabinose -L-Ribulose -S-D-Xylulose-5for L-Ara phosphate phosphate transport.) В Δ P1 P2 Arabinose Ara **\raC** Ara Antiactivator Activator Arabinose

 Δ

Figure 12.18

Figure 2.10

Analysis of Ara mutants

At least 4 complementation groups/genes (*araA*, *araB*, *araC* and *araD*) are defined by the Ara⁻ mutants

What could be the function of *araC*? (*Remember:* AraC is not the L-Ara permease)

cAMP-CRP and AraC

Figure 13.4

