
Lecture 4: Random
Variables and Distributions



Goals

• Working with distributions in R

• Overview of discrete and continuous
distributions important in genetics/genomics

• Random Variables



Random Variables

! 

"

0 1-1

A rv is any rule (i.e., function) that associates
a number with each outcome in the sample

space



Two Types of Random Variables

• A discrete random variable has a
countable number of possible values

• A continuous random variable takes all
values in an interval of numbers



Probability Distributions of RVs
Discrete

Let X be a discrete rv. Then the probability mass function (pmf), f(x),
of X is:

! 

f (x) =
P(X = x), x ∈ Ω

  0, x ∉ Ω

Continuous

! 

P(a " X " b) = f (x)dx
a

b

#

Let X be a continuous rv. Then the probability density function (pdf) of
X is a function f(x) such that for any two numbers a and b with a ≤ b:

a b

A a



Using CDFs to Compute Probabilities

Continuous rv:

! 

F(x) = P(X " x) = f (y)dy
#$

x

%

pdf cdf

! 

P(a " X " b) = F(b) # F(a)



Using CDFs to Compute Probabilities

Continuous rv:

! 

F(x) = P(X " x) = f (y)dy
#$

x

%

pdf cdf

! 

P(a " X " b) = F(b) # F(a)



Expectation of Random Variables

Continuous

! 

µX = E[X] = x " f (x)dx
#$

$

%

The expected or mean value of a continuous rv X with pdf f(x) is:

Discrete
Let X be a discrete rv that takes on values in the set D and has a
pmf f(x). Then the expected or mean value of X is:

! 

µX = E[X] = x " f (x)
x#D

$



Variance of Random Variables

Continuous

! 

"X

2 =V[X] = (x #µ)2 $ f (x)dx
#%

%

& = E[(X #µ)2]

The variance of a continuous rv X with pdf f(x) and mean µ is:

Discrete
Let X be a discrete rv with pmf f(x) and expected value µ. The
variance of X is:

! 

"
X

2 =V[X] = (x #
x$D

% µ)2 = E[(X #µ)2]



Example of Expectation and Variance

• Let L1, L2, …, Ln be a sequence of n nucleotides and define the rv
Xi:

1, if Li = A

  0, otherwise
Xi

• pmf is then: P(Xi = 1) = P(Li = A) = pA

P(Xi = 0) = P(Li = C or G or T) = 1 - pA

• E[X] = 1 x pA + 0 x (1 - pA) = pA

• Var[X] = E[X - µ]2 = E[X2] - µ2

= [12 x pA + 02 x (1 - pA)] - pA
2

= pA (1 - pA)



The Distributions We’ll Study

1. Binomial Distribution

2. Hypergeometric Distribution

3. Poisson Distribution

4. Normal Distribution



Binomial Distribution
• Experiment consists of n trials

– e.g., 15 tosses of a coin; 20 patients; 1000 people surveyed

• Trials are identical and each can result in
one of the same two outcomes
– e.g., head or tail in each toss of a coin

– Generally called “success” and “failure”

– Probability of success is p, probability of failure is 1 – p

• Trials are independent

• Constant probability for each observation

– e.g., Probability of getting a tail is the same each time we
toss the coin



Binomial Distribution

! 

P{X = x} = ( )px (1" p)n"xn
x

pmf:

E(x) = np

cdf:

! 

P{X " x} = ( )py (1# p)n#y

y= 0

x

$ n
y

Var(x) = np(1-p)



Binomial Distribution: Example 1

• A couple, who are both carriers for a recessive
disease, wish to have 5 children. They want to know
the probability that they will have four healthy kids

! 

P{X = 4} = ( )0.754 " 0.2515
4

= 0.395

0 1 2 3 4 5

p(x)



Binomial Distribution: Example 2

• Wright-Fisher model: There are i copies of the A allele
in a population of size 2N in generation t. What is the
distribution of the number of A alleles in generation t
+ 1?
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2N

pij = j j = 0, 1, …, 2N



Hypergeometric Distribution

• Population to be sampled consists of N
finite individuals, objects, or elements

• Each individual can be characterized as a
success or failure, m successes in the
population

• A sample of size k is drawn and the rv of
interest is X = number of successes



Hypergeometric Distribution

• Similar in spirit to Binomial distribution, but from a finite
population without replacement

20 white balls
out of

100 balls

If we randomly sample 10 balls, what is the probability that 7
or more are white?



Hypergeometric Distribution

• pmf of a hypergeometric rv:

! 

P{X = i | n,m,k} =

m
i

   n    k - i

m + n  k

For i = 0, 1, 2, 3, …

Where,

m = Number of balls in urn considered “success” 

k = Number of balls selected 

n = Number of balls in urn considered “failure”

m + n = Total number of balls in urn



Hypergeometric Distribution

• Extensively used in genomics to test for “enrichment”:

! 

" = Number of annotated genes

Number of
genes of
interest

Number of
genes with
annotation

Number of genes of interest with
annotation



Poisson Distribution

• Useful in studying rare events

• Poisson distribution also used in situations
where “events” happen at certain points
in time

• Poisson distribution approximates the
binomial distribution when n is large and p
is small



Poisson Distribution

! 

P{X = i} = e
"# #

i

i!

• A rv X follows a Poisson distribution if the pmf of X is:

For i = 0, 1, 2, 3, …

• λ is frequently a rate per unit time:

• Safely approximates a binomial experiment when n > 100, p <
0.01, np = λ < 20)

• E(X) = Var(X) = λ

λ = αt = expected number of events per unit time t



Poisson RV: Example 1

! 

P{X = i} = e
"d d

i

i!

• The number of crossovers, X, between two
markers is X ~ poisson(λ=d)

! 

P{X = 0} = e
"d

! 

P{X "1} =1# e
#d



Poisson RV: Example 2

• Recent work in Drosophila suggests the spontaneous rate of
deleterious mutations is ~ 1.2 per diploid genome. Thus, let’s
tentatively assume X ~ poisson(λ = 1.2) for humans. What is
the probability that an individual has 12 or more spontaneous
deleterious mutations?

! 

P{X "12} =1# e
#1.2 1.2

i

i!
i= 0

11

$

= 6.17 x 10-9



Poisson RV: Example 3

• Suppose that a rare disease has an incidence of 1 in 1000 people
per year.  Assuming that members of the population are affected
independently, find the probability of k cases in a population of
10,000 (followed over 1 year) for k=0,1,2.

The expected value (mean) = λ = .001*10,000 = 10

! 

P(X = 0) =
(10)

0
e
"(10)

0!
= .0000454

P(X =1) =
(10)

1
e
"(10)

1!
= .000454

P(X = 2) =
(10)

2
e
"(10)

2!
= .00227



Normal Distribution

• “Most important” probability distribution

• Many rv’s are approximately normally
distributed

• Even when they aren’t, their sums and
averages often are (CLT)



Normal Distribution

! 

f (x;µ," 2
) =

1

2#"
e
$(x$µ )2 / 2" 2

• pdf of normal distribution:

• standard normal distribution (µ = 0, σ2 = 1):

! 

f (z;0,1) =
1

2"#
e
$z

2
/ 2

• cdf of Z:

! 

P(Z " z) = f (y;0,1)
#$

z

% dy



Standardizing Normal RV

• If X has a normal distribution with mean µ and
standard deviation σ, we can standardize to a standard
normal rv:

! 

Z =
X "µ

#



I Digress: Sampling Distributions

• Before data is collected, we regard observations as random
variables (X1,X2,…,Xn)

• This implies that until data is collected, any  function (statistic)
of the observations (mean, sd, etc.) is also a random variable

• Thus, any statistic, because it is a random variable, has a
probability distribution - referred to as a sampling
distribution

• Let’s focus on the sampling distribution of the mean,

! 

X 



Behold The Power of the CLT
• Let X1,X2,…,Xn be an iid random sample from a distribution with mean µ and

standard deviation σ. If n is sufficiently large:

! 

X ~N(µ
,

! 

"

n
)



Example
• If the mean and standard deviation of serum iron values from

healthy men are 120 and 15 mgs per 100ml, respectively, what is
the probability that a random sample of 50 normal men will yield a
mean between 115 and 125 mgs per 100ml?

! 

p(115 " x "125 = p
115 #120

2.12
" x "

125 #120

2.12

$ 

% 
& 

' 

( 
) 

! 

= p "2.36 # z # 2.36( )

! 

= p z " 2.36( ) # p z " #2.36( )

= 0.9909 # 0.0091

= 0.9818

First, calculate mean and sd to normalize (120 and )

! 

15 / 50



R
• Understand how to calculate probabilities from probability

distributions

 Normal: dnorm and pnorm

 Poisson: dpois and ppois

 Binomial: dbinom and pbinom

 Hypergeometric: dhyper and phyper

• Exploring relationships among distributions


