Lecture 4: Random Variables and Distributions

Goals

- Random Variables
- Overview of discrete and continuous distributions important in genetics/genomics
- Working with distributions in R

Random Variables

A rv is any rule (i.e., function) that associates a number with each outcome in the sample space

Two Types of Random Variables

- A discrete random variable has a countable number of possible values
- A continuous random variable takes all values in an interval of numbers

Probability Distributions of RVs

Discrete

Let X be a discrete rv . Then the probability mass function ($p m f$), $\mathrm{f}(\mathrm{x})$, of X is:

$$
f(x)= \begin{cases}\mathrm{P}(\mathrm{X}=\mathrm{x}), & \mathrm{x} \in \Omega \\ 0, & \mathrm{x} \notin \Omega\end{cases}
$$

Continuous

Let X be a continuous rv. Then the probability density function (pdf) of X is a function $f(x)$ such that for any two numbers a and b with $a \leq b$:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Using CDFs to Compute Probabilities

Continuous rv: $\quad F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y$

Using CDFs to Compute Probabilities

Continuous rv: $\quad F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y$

Expectation of Random Variables

Discrete

Let X be a discrete rv that takes on values in the set D and has a $p m f f(x)$. Then the expected or mean value of X is:

$$
\mu_{X}=E[X]=\sum_{x \in D} x \cdot f(x)
$$

Continuous

The expected or mean value of a continuous rv X with $\mathrm{pdf} f(\mathrm{x})$ is:

$$
\mu_{X}=E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Variance of Random Variables

Discrete

Let X be a discrete rv with $p m f f(x)$ and expected value μ. The variance of X is:

$$
\sigma_{X}^{2}=V[X]=\sum_{x \in D}(x-\mu)^{2}=E\left[(X-\mu)^{2}\right]
$$

Continuous

The variance of a continuous rv X with $p d f(x)$ and mean μ is:

$$
\sigma_{X}^{2}=V[X]=\int_{-\infty}^{\infty}(x-\mu)^{2} \cdot f(x) d x=E\left[(X-\mu)^{2}\right]
$$

Example of Expectation and Variance

- Let $L_{1}, L_{2}, \ldots, L_{n}$ be a sequence of n nucleotides and define the $r v$ X_{i} :

$$
X_{i}\left\{\begin{array}{l}
1, \text { if } L_{i}=A \\
0, \text { otherwise }
\end{array}\right.
$$

- pmf is then: $P\left(X_{i}=1\right)=P\left(L_{i}=A\right)=P_{A}$

$$
P\left(X_{i}=0\right)=P\left(L_{i}=C \text { or } G \text { or } T\right)=1-P_{A}
$$

- $E[X]=1 \times p_{A}+0 \times\left(1-p_{A}\right)=p_{A}$
- $\operatorname{Var}[\mathrm{X}]=\mathrm{E}[\mathrm{X}-\mu]^{2}=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mu^{2}$

$$
\begin{aligned}
& =\left[1^{2} \times p_{A}+0^{2} \times\left(1-p_{A}\right)\right]-p_{A}^{2} \\
& =p_{A}\left(1-p_{A}\right)
\end{aligned}
$$

The Distributions We'll Study

1. Binomial Distribution
2. Hypergeometric Distribution
3. Poisson Distribution
4. Normal Distribution

Binomial Distribution

- Experiment consists of \mathbf{n} trials
- e.g., I5 tosses of a coin; 20 patients; 1000 people surveyed
- Trials are identical and each can result in one of the same two outcomes
- e.g., head or tail in each toss of a coin
- Generally called "success" and "failure"
- Probability of success is p, probability of failure is 1 - p
- Trials are independent
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin

Binomial Distribution

pmf:

$$
P\{X=x\}=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

cdf:

$$
P\{X \leq x\}=\sum_{y=0}^{x}\binom{n}{y} p^{y}(1-p)^{n-y}
$$

$E(x)=n p$

$\operatorname{Var}(x)=\mathbf{n p}(1-p)$

Binomial Distribution: Example 1

- A couple, who are both carriers for a recessive disease, wish to have 5 children. They want to know the probability that they will have four healthy kids

$$
\begin{aligned}
P\{X=4\} & =\binom{5}{4} 0.75^{4} \times 0.25^{1} \\
& =0.395
\end{aligned}
$$

Binomial Distribution: Example 2

- Wright-Fisher model: There are i copies of the A allele in a population of size 2 N in generation t . What is the distribution of the number of A alleles in generation t +1 ?

$$
p_{i j}=\binom{2 N}{j}\left(\frac{i}{2 N}\right)^{j}\left(1-\frac{i}{2 N}\right)^{2 N-j} \mathrm{j}=0,1, \ldots, 2 N
$$

Hypergeometric Distribution

- Population to be sampled consists of \mathbf{N} finite individuals, objects, or elements
- Each individual can be characterized as a success or failure, m successes in the population
- A sample of size k is drawn and the rv of interest is $\mathbf{X}=$ number of successes

Hypergeometric Distribution

- Similar in spirit to Binomial distribution, but from a finite population without replacement

If we randomly sample 10 balls, what is the probability that 7 or more are white?

Hypergeometric Distribution

- pmf of a hypergeometric rv:

$$
P\{X=i \mid n, m, k\}=\frac{\binom{m}{i}\left[\begin{array}{c}
n \\
k-i
\end{array}\right)}{\binom{m+n}{k}} \quad \text { For } \mathrm{i}=0,1,2,3, \ldots
$$

Where,
$\mathrm{k}=$ Number of balls selected
$\mathrm{m}=$ Number of balls in urn considered "success"
$\mathrm{n}=$ Number of balls in urn considered "failure"
$\mathrm{m}+\mathrm{n}=$ Total number of balls in urn

Hypergeometric Distribution

- Extensively used in genomics to test for "enrichment":

Number of genes of interest with annotation

Poisson Distribution

- Useful in studying rare events
- Poisson distribution also used in situations where "events" happen at certain points in time
- Poisson distribution approximates the binomial distribution when \mathbf{n} is large and p is small

Poisson Distribution

- A rv X follows a Poisson distribution if the pmf of X is:

$$
P\{X=i\}=e^{-\lambda} \frac{\lambda^{i}}{i!} \quad \text { For } \mathrm{i}=0,1,2,3, \ldots
$$

- λ is frequently a rate per unit time:
$\lambda=\alpha t=$ expected number of events per unit time t
- Safely approximates a binomial experiment when $\mathrm{n}>100, \mathrm{p}<$ 0.01, $\mathrm{np}=\lambda<20$)
- $E(X)=\operatorname{Var}(X)=\lambda$

Poisson RV: Example 1

- The number of crossovers, X, between two markers is $X \sim \operatorname{poisson}(\lambda=d)$

$$
\begin{aligned}
& P\{X=i\}=e^{-d} \frac{d^{i}}{i!} \\
& P\{X=0\}=e^{-d} \\
& P\{X \geq 1\}=1-e^{-d}
\end{aligned}
$$

Poisson RV: Example 2

- Recent work in Drosophila suggests the spontaneous rate of deleterious mutations is ~ 1.2 per diploid genome. Thus, let's tentatively assume $X \sim \operatorname{poisson}(\lambda=1.2)$ for humans. What is the probability that an individual has 12 or more spontaneous deleterious mutations?

$$
\begin{aligned}
P\{X \geq 12\} & =1-\sum_{i=0}^{11} e^{-1.2} \frac{1.2^{i}}{i!} \\
& =6.17 \times 10^{-9}
\end{aligned}
$$

Poisson RV: Example 3

- Suppose that a rare disease has an incidence of 1 in 1000 people per year. Assuming that members of the population are affected independently, find the probability of k cases in a population of 10,000 (followed over 1 year) for $k=0,1,2$.

The expected value $($ mean $)=\lambda=.001 * 10,000=10$

$$
\begin{aligned}
& P(X=0)=\frac{(10)^{0} e^{-(10)}}{0!}=.0000454 \\
& P(X=1)=\frac{(10)^{1} e^{-(10)}}{1!}=.000454 \\
& P(X=2)=\frac{(10)^{2} e^{-(10)}}{2!}=.00227
\end{aligned}
$$

Normal Distribution

- "Most important" probability distribution
- Many rv's are approximately normally distributed
- Even when they aren't, their sums and averages often are (CLT)

Normal Distribution

- pdf of normal distribution:

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- standard normal distribution $\left(\mu=0, \sigma^{2}=1\right)$:

$$
f(z ; 0,1)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-z^{2} / 2}
$$

- cdf of Z:

$$
P(Z \leq z)=\int_{-\infty}^{z} f(y ; 0,1) \mathrm{dy}
$$

Standardizing Normal RV

- If X has a normal distribution with mean μ and standard deviation σ, we can standardize to a standard normal rv:

$$
Z=\frac{X-\mu}{\sigma}
$$

I Digress: Sampling Distributions

- Before data is collected, we regard observations as random variables ($\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$)
- This implies that until data is collected, any function (statistic) of the observations (mean, sd, etc.) is also a random variable
- Thus, any statistic, because it is a random variable, has a probability distribution - referred to as a sampling distribution
- Let's focus on the sampling distribution of the mean, \bar{X}

Behold The Power of the CLT

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be an iid random sample from a distribution with mean μ and standard deviation σ. If n is sufficiently large:

$$
\bar{X} \sim N\left(\mu \frac{\sigma}{\sqrt{n}}\right)
$$

,

Example

- If the mean and standard deviation of serum iron values from healthy men are 120 and 15 mgs per 100 ml , respectively, what is the probability that a random sample of 50 normal men will yield a mean between 115 and 125 mgs per 100 ml ?

First, calculate mean and sd to normalize (120 and 15/ $\sqrt{50}$)

$$
\begin{aligned}
p(115 \leq \bar{x} \leq 125 & =p\left(\frac{115-120}{2.12} \leq \bar{x} \leq \frac{125-120}{2.12}\right) \\
& =p(-2.36 \leq z \leq 2.36) \\
& =p(z \leq 2.36)-p(z \leq-2.36) \\
& =0.9909-0.0091 \\
& =0.9818
\end{aligned}
$$

R

- Understand how to calculate probabilities from probability distributions
> Normal: dnorm and pnorm
> Poisson: dpois and ppois
$>$ Binomial: dbinom and pbinom
> Hypergeometric: dhyper and phyper
- Exploring relationships among distributions

