Lecture 10: Multiple Testing



Goals

* Define the multiple testing problem and related
concepts

* Methods for addressing multiple testing (FVWWER
and FDR)

* Correcting for multiple testing in R



Decision

Do Not
Reject H,

Rejct H,

Type | and |l Errors

Actual Situation “Truth”

H, True

H, False

Correct Decision

Incorrect Decision

Type Il Error
1-a
B
Incorrect Decision Correct Decision
Type | Error 1.8
o

a = P(Type I Error)

p = P(Type Il Error)




Why Multiple Testing Matters

Genomics = Lots of Data = Lots of Hypothesis Tests

A typical microarray experiment might result in performing
10000 separate hypothesis tests. If we use a standard p-value
cut-off of 0.05, we’'d expect 500 genes to be deemed
“significant” by chance.



Why Multiple Testing Matters

* In general, if we perform m hypothesis tests, what is the
probability of at least 1 false positive?

P(Making an error) = a
P(Not making an error) =1 -

P(Not making an error in m tests) = (1 - o)™

P(Making at least 1 error in m tests) =1 - (1 - o)™



Probability of At Least 1 False Positive
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Counting Errors

Assume we are testing H', H?, ..., H™

m, = # of true hypotheses R =# of rejected hypotheses

Null Alternative
True True Total
Not Called
Significant u T m - R
Called
Significant v S R

V' = # Type | errors [false positives]




What Does Correcting for Multiple
Testing Mean?

* When people say “adjusting p-values for the number of
hypothesis tests performed” what they mean is
controlling the Type I error rate

* Very active area of statistics - many different methods
have been described

* Although these varied approaches have the same goal,
they go about it in fundamentally different ways



Different Approaches To Control Type | Errors

Per comparison error rate (PCER): the expected value of the number
of Type | errors over the number of hypotheses,

PCER = E(V)/m

 Per-family error rate (PFER): the expected number of Type | errors,
PFE = E(V).

 Family-wise error rate: the probability of at least one type | error
FEWR = P(V 2 1)

* False discovery rate (FDR) is the expected proportion of Type | errors
among the rejected hypotheses

FDR = E(V/R | R>0)P(R>0)

 Positive false discovery rate (pFDR): the rate that discoveries are
false

pFDR = E(V/R | R > 0)



Digression: p-values

* Implicit in all multiple testing procedures is the
assumption that the distribution of p-values is
“correct”

* This assumption often is not valid for genomics data
where p-values are obtained by asymptotic theory

* Thus, resampling methods are often used to calculate
calculate p-values



Permutations

Analyze the problem: think carefully about the null and
alternative hypotheses

Choose a test statistic

Calculate the test statistic for the original labeling of the
observations

Permute the labels and recalculate the test statistic
* Do all permutations: Exact Test
* Randomly selected subset: Monte Carlo Test

Calculate p-value by comparing where the observed test
statistic value lies in the permuted distributed of test statistics



Example: What to Permute?

» Gene expression matrix of m genes measured in 4 cases
and 4 controls

Gene Casel Case?2 Case3 Case4 |Controll Control2 Control 3 Control 4

1 Xll X12 X13 X14 X15 X16 X17 X18
2 X21 X22 X23 X24 X325 X26 X27 X8
3 X31 X32 X33 X34 X35 X36 X37 X3s
4




Back To Multiple Testing: FWER

* Many procedures have been developed to control the
Family Wise Error Rate (the probability of at least one
type | error):

P(V 2 1)

* Two general types of FWER corrections:

1. Single step: equivalent adjustments made to each
p-value

2. Sequential: adaptive adjustment made to each p-
value



Single Step Approach: Bonferroni

* Very simple method for ensuring that the overall Type |
error rate of a is maintained when performing m

independent hypothesis tests

* Rejects any hypothesis with p-value < a/m:

~S

p' = min[mpj9 1]

J

* For example, if we want to have an experiment wide Type |
error rate of 0.05 when we perform 10,000 hypothesis tests,

we’d need a p-value of 0.05/10000 = 5 x 10-® to declare
significance



Philosophical Objections to Bonferroni
Corrections

“Bonferroni adjustments are, at best, unnecessary
and, at worst, deleterious to sound statistical
inference” Perneger (1998)

* Counter-intuitive: interpretation of finding depends on the
number of other tests performed

* The general null hypothesis (that all the null hypotheses are
true) is rarely of interest

* High probability of type 2 errors, i.e. of not rejecting the
general null hypothesis when important effects exist



FWER: Sequential Adjustments

 Simplest sequential method is Holm’s Method

» Order the unadjusted p-values such that p, <p, = ... <p

m

» For control of the FWER at level a, the step-down Holm adjusted p-
values are

p;=min[(m—j+1)*p, 1]
» The point here is that we don’t multiply every p. by the same factor m

* For example, when m = 10000:

B, =10000° p,, p, =9999¢ p.,...p =1ep



Who Cares About Not Making ANY
Type | Errors?

* FWER is appropriate when you want to guard against
ANY false positives

* However, in many cases (particularly in genomics) we
can live with a certain number of false positives

* In these cases, the more relevant quantity to control is
the false discovery rate (FDR)



False Discovery Rate

Null Alternative
True True Total
Not Called
Significant u T m - R
Called
Significant v S R

V. = # Type | errors [false positives]

* False discovery rate (FDR) is designed to control the proportion
of false positives among the set of rejected hypotheses (R)



FDR vs FPR

Null Alternative
True True Total
Not Called
Significant U T m - R
Called
Significant v S R
V V
FDR = — FPR =—
R m,



Benjamini and Hochberg FDR

e To control FDR at level o:

1. Order the unadjusted p-values: p; < p, < ... = p,,

2. Then find the test with the highest rank, j, for which the p
value, p, is less than or equal to (j/m) x 0

3. Declare the tests of rank 1, 2, ..., j as significant

p(j) =L
m



B&H FDR Example
Controlling the FDR at 0 = 0.05

Rank (j) | P-value (j/m)x O Reject H, ?
1 0.0008 0.005 1
2 0.009 0.010 1
3 0.165 0.015 0
4 0.205 0.020 0
5 0.396 0.025 0
6 0.450 0.030 0
7 0.641 0.035 0
8 0.781 0.040 0
9 0.900 0.045 0
10 0.993 0.050 0




Storey’s positive FDR (pFDR)

BH:FDR=FE %IR>O P(R>0)
v _
Storey : pFDR = E E|R>O

 Since P(R > 0) is ~ 1 in most genomics experiments FDR
and pFDR are very similar

* Omitting P(R > 0) facilitated development of a measure of
significance in terms of the FDR for each hypothesis



What's a g-value?

* g-value is defined as the minimum FDR that can be attained when
calling that “feature” significant (i.e., expected proportion of false
positives incurred when calling that feature significant)

* The estimated g-value is a function of the p-value for that test
and the distribution of the entire set of p-values from the family of
tests being considered (Storey and Tibshiriani 2003)

* Thus, in an array study testing for differential expression, if gene X
has a g-value of 0.013 it means that 1.3% of genes that show p-
values at least as small as gene X are false positives



Estimating The Proportion of Truly Null
Tests

* Under the null hypothesis p-values are expected to be uniformly
distributed between 0 and 1




Estimating The Proportion of Truly Null
Tests

* Under the alternative hypothesis p-values are skewed towards 0
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Estimating The Proportion of Truly Null
Tests

* Combined distribution is a mixture of p-values from the null and
alternative hypotheses

PPPPPPP



Estimating The Proportion of Truly Null
Tests

* For p-values greater than say 0.5, we can assume they mostly
represent observations from the null hypothesis

PPPPPPP



Definition of x,

* 7T, is the proportion of truly null tests:

#{p. > Ai=12,..,m}

FolA)= m(l- 1)
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* 1 -7,is the proportion of truly alternative tests (very useful!)



